[1]王骁,吴雪,赵纯.酶预处理协同高压射流对微纤化纤维素特性的影响[J].高分子通报,2022,(09):52-59.[doi:10.14028/j.cnki.1003-3726.2022.09.007]
 WANG Xiao,WU Xue,ZHAO Chun.Effect of Enzyme Pretreatment Combined with High Pressure Jet on Physicochemical Properties of Microfibrillated Cellulose[J].POLYMER BULLETIN,2022,(09):52-59.[doi:10.14028/j.cnki.1003-3726.2022.09.007]
点击复制

酶预处理协同高压射流对微纤化纤维素特性的影响()
分享到:

《高分子通报》[ISSN:1003-3726/CN:11-2051/O6]

卷:
期数:
2022年09期
页码:
52-59
栏目:
出版日期:
2022-09-20

文章信息/Info

Title:
Effect of Enzyme Pretreatment Combined with High Pressure Jet on Physicochemical Properties of Microfibrillated Cellulose
作者:
王骁 吴雪 赵纯
北京工商大学人工智能学院, 北京 100048
Author(s):
WANG Xiao WU Xue ZHAO Chun
School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China
关键词:
微纤化纤维素酶预处理高压射流微细化
Keywords:
Microfibrillated celluloseEnzyme pretreatmentHigh pressure jetMicronization
DOI:
10.14028/j.cnki.1003-3726.2022.09.007
文献标志码:
A
摘要:
纤维素酶预处理方法因其环境友好等特点在微纤化纤维素制备中受到关注。本研究采用不同浓度纤维素酶协同高压射流处理,开展微纤化纤维素的制备研究。实验结果表明,经过酶解协同高压射流处理后,纤维素原纤束直径由几至几十微米下降到几十至几百纳米之间,而纤维素的晶体结构基本未变。粒径分析说明,酶浓度1%(w/w)的纤维素酶协同高压射流处理的纤维素微细化效果较好。酶浓度从0.1%增加至0.5%时,高压射流处理后的纤维素水分散液的黏度增加,热稳定性和纤维素薄膜的拉伸性能增强,0.5%酶协同高压射流处理的微纤化纤维素薄膜平均抗拉强度达到为18.74MPa,1%酶协同高压射流处理的薄膜样品拉伸特性无明显变化,其平均抗拉强度为18.99MPa,平均断裂伸长率为8.74%,平均弹性模量为293.8MPa。
Abstract:
Cellulase pretreatment has attracted much attention in the preparation of microfibrillated cellulose due to its environmental friendliness. In this study, different concentrations of cellulase and high pressure jet treatment were used to prepare microfibrillated cellulose. The results show that the diameter of cellulose fibrils was decreased from several or tens of microns to tens or hundreds of nanometers and crystal structure was not changed after cellulase pretreatment and high pressure jet treatment. The particle size analysis shows that the cellulose micronizing level based on 1% (w/w) cellulase pretreatment and high pressure jet treatment is higher. With the increase of enzyme concentration from 0.1% to 0.5%, the viscosity of cellulose aqueous dispersion increased, and the thermal stability and the tensile properties of cellulose films were enhanced. The average tensile strength of the films treated with 0.5% enzyme and high pressure jet treatment is 18.74MPa. The tensile properties of the films treated with 1% cellulase pretreatment and high pressure jet treatment had little change. And the average tensile strength is 18.99MPa, the average elongation at break is 8.74%, and the average elastic modulus is 293.8MPa.

参考文献/References:

[1] Oleksandr N, Mohamed N B, Julien B.Ind Crop Prod, 2016, 93:2~25.
[2] 杜海顺,刘超,张苗苗,孔庆山,李滨,咸漠.化学进展,2018,30(4):448~462.
[3] Abraham E, Deepa B, Pothan L A, Jacob M, Thomas S, Cvelbar U, Anandjiwala R.Carbohydr Polym, 2011, 86(4):1468~1475.
[4] 姚一军,王鸿儒.化工进展,2018,37(2):599~609.
[5] 陈帅,李新平,杜敏,王志杰,陈立红.功能材料,2015,46(8):8090~8093.
[6] Zhu H L, Luo W, Fang Z Q, Zhu J Y, Henriksson G, Himmel M E, Hu L B.Chem Rev, 2016, 116(16):9305~9374.
[7] 许凯瑞,宫庆华,周国伟.高分子通报,2020,(10):12~20.
[8] 殷晓春,思广慧,师玉卓,王新华,顾永娥,孟军亮,张娜娣.高分子通报,2019,(11):15~25.
[9] Khan A, Wen Y B, Huq T, Ni Y H.J Agric Food Chem, 2018, 66(1):8~19.
[10] 蔡杰,吕昂,周金平,张俐娜.纤维素科学与材料.北京:化学工业出版社,2015,277~300.
[11] Moon R J, Martini A, Nairn J, John S, Jeff Y.Chem Soc Rev, 2011, 40:3941~3994.
[12] Lee S Y, Chun S J, Kang I A, Park J Y.J Ind Eng Chem,2008,15(1):50~55.
[13] Zhang J H, Song H N, Lin L, Zhuang J P, Pang C S, Liu S J.Biomass Bioenergy,2012,39:78~83.
[14] 冯瞿,吴雪,王博洋,刘斌.功能材料,2020,51(8):8078~8084.
[15] Qing Y, Ronald S, Zhu J Y, Agarwal U, Cai Z Y, Wu Y Q.Carbohydr Polym, 2013, 97(1):226~234.
[16] Zhou H F, St J F, Zhu J Y.Cellulose, 2019, 26(1):543~555.
[17] Tian X, Lu P, Song X, Nie S X, Liu Y, Liu M Y, Wang Z W.Cellulose, 2017, 24(9):3929~3942.
[18] Liang C, Gu C, Raftery J, Karim M N, Holtzapple M.Biotechnol Biofuels, 2019, 12(1):34~46.
[19] Zhang K, Zhang Y H, Yan D P, Zhang C Y, Nie S X.Cellulose, 2018, 25(9):5049~5061.
[20] Hu J G, Tian D, Renneckar S, Saddler J N.Sci Rep, 2018, 8(1):3195~3202.
[21] Eyholzer C, Bordeanu N, Lopez-Suevos F.Cellulose, 2010, 17:19~30.
[22] Besbes I, Alila S, Boufi S.Carbohydr Polym, 2011, 84(3):975~983.
[23] Tonoli G H D, Teixeira E M, Corrêa A C, Marconcini, J M, Caixeta L A, Pereira-da-Silva M A, Mattoso L H C.Carbohydr Polym, 2012, 89(1):80~88.
[24] Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson P T, Ikkala O, Lindström T.Biomacromolecules, 2007, 8:1934~1941.
[25] Samir M A S A, Alloin F, Paillet M, Dufresne A.Macromolecules, 2004, 37:4313~4316.
[26] Quiévy N, Jacquet N, Sclavons M, Deroanne C, Paquot M, Devaux J.Polym Degrad Stab, 2010, 95:306~314.

相似文献/References:

[1]郑学晶,王丽,刘捷,等.微纤化纤维素增强聚合物基复合材料研究进展[J].高分子通报,2015,(08):43.[doi:10.14028/j.cnki.1003-3726.2015.08.006]
 ZHENG Xue-jing,WANG Li,LIU Jie,et al.Research Progress on Polymeric Composites Based on Microfibrillated Cellulose[J].POLYMER BULLETIN,2015,(09):43.[doi:10.14028/j.cnki.1003-3726.2015.08.006]
[2]赵纯,吴雪,刘斌,等.碱热协同高压射流方法对微纤化纤维素物化特性的影响[J].高分子通报,2020,(07):46.[doi:10.14028/j.cnki.1003-3726.2020.07.006]
 ZHAO Chun,WU Xue,LIU Bin,et al.Effect of Alkali-heat and High Pressure Jet on Physicochemical Properties of Nanocellulose[J].POLYMER BULLETIN,2020,(09):46.[doi:10.14028/j.cnki.1003-3726.2020.07.006]

备注/Memo

备注/Memo:
收稿日期:2021-06-09;改回日期:2022-01-17。
基金项目:国家重点研发计划资助(2016YFD0400305)
作者简介:王骁(1997-),男,硕士研究生,机械工程专业。E-mail:1822143780@qq.com
通讯作者:吴雪(1974-),女,主要从事食品加工技术与装备研究。E-mail:wuxue@th.btbu.edu.cn.
更新日期/Last Update: 2022-08-19