[1]刘佳伟,戴彩丽,李琳.基于多重超分子作用的自修复凝胶研究进展及在油田领域应用前景[J].高分子通报,2022,(10):9-15.[doi:10.14028/j.cnki.1003-3726.2022.10.002]
 LIU Jia-wei,DAI Cai-li,LI Lin.Research Progress on Self-repairing Gel of Multiple Supramolecular and Its Application Prospect in Oil Field[J].POLYMER BULLETIN,2022,(10):9-15.[doi:10.14028/j.cnki.1003-3726.2022.10.002]
点击复制

基于多重超分子作用的自修复凝胶研究进展及在油田领域应用前景()
分享到:

《高分子通报》[ISSN:1003-3726/CN:11-2051/O6]

卷:
期数:
2022年10期
页码:
9-15
栏目:
出版日期:
2022-10-20

文章信息/Info

Title:
Research Progress on Self-repairing Gel of Multiple Supramolecular and Its Application Prospect in Oil Field
作者:
刘佳伟12 戴彩丽12 李琳12
1. 山东省油田化学重点实验室(中国石油大学(华东)), 青岛 266580;
2. 非常规油气开发教育部 重点实验室(中国石油大学(华东)), 青岛 266580
Author(s):
LIU Jia-wei12 DAI Cai-li12 LI Lin12
1. Shandong Key Laboratory of Oilfield Chemistry, Department of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
2. Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
关键词:
自修复凝胶超分子作用智能材料油田化学
Keywords:
Self-repairing gelSupramolecular interactionSmart materialsOilfield chemistry
DOI:
10.14028/j.cnki.1003-3726.2022.10.002
文献标志码:
A
摘要:
自修复凝胶作为智能材料的一种,在受到外力破坏后能够自修复其结构与机械等性能,在高分子材料与石油工程交叉学科的发展中具有深远意义。本文系统介绍了基于多重氢键作用、静电-氢键作用、金属配位-氢键作用、π-π堆积-氢键作用、类儿茶酚型多种超分子作用的自修复凝胶在近些年的研究进展,分析了不同类型超分子作用规律及自修复特点,探讨了自修复凝胶材料在油田钻井、压裂、储层调控等领域的潜在应用,基于多重超分子作用设计的材料将会推动油田的智能发展。
Abstract:
Self-repairing gel, as an intelligent material, can self-repair its structure and mechanical properties after being damaged by the outside world, which has far-reaching significance in the development of the interdisciplinary development of polymer materials and petroleum engineering. This paper systematically introduced the research progress of self-healing gels in recent years, based on multiple hydrogen bonding, electrostatic-hydrogen bonding, metal coordination-hydrogen bonding, π-π stacking-hydrogen bonding, and catechol-like supramolecular interactions. The interaction laws and self-healing characteristics of different types of supramolecules have been analyzed, and the potential applications of self-healing gel materials in oilfield drilling, fracturing, reservoir control has been discussed. Materials designed based on multiple supramolecular interactions will promote the intelligent development of oilfields.

参考文献/References:

[1] 陈晓丹, 蒋国霞. 高分子通报, 2017, (8):39~47.
[2] 杨珏莹, 陈煜, 赵琳, 张子涵, 杨威, 刘媛, 彭克林, 王雅伦. 材料导报, 2020, 34(5):137~145.
[3] 李海燕, 张丽冰, 王俊. 化工进展, 2012, 31(7):1549~1554.
[4] Yang Y, Urban M W. Chem Soc Rev, 2013, 42(17):7446~7467.
[5] 吕亚非. 高分子通报, 2005, (3):100~108.
[6] 王毓江, 唐黎明. 化学进展, 2006, 18(Z1):308~315.
[7] 燕良, 唐黎明, 王毓江. 高分子学报, 2006, (5):736~739.
[8] Cordier P, Tournilhac F, Ziakovic C S, Leibler L. Nature, 2008, 451(7181):977~980.
[9] Cui J X, Campo A D. Chem Commun, 2012, 48(74):9302~9304.
[10] 林殷雷. 新型自愈合高分子水凝胶的设计、制备与性能研究. 广州:华南理工大学, 2014.
[11] Zhang G Z, Ngai T, Deng Y H, Wang C Y. Macromol Chem Phys, 2016, 217(19):2172~2181.
[12] Chen J S, Peng Q Y, Thundat T, Zeng H B. Chem Mater, 2019, 31(12):4553~4563.
[13] Saunders L, Peter X. Macromol Biosci, 2019, 19(1):1800313.
[14] Dankers P Y W, Hermans T M, Baughman T W. Adv Mater, 2012, 24(20):2703~2709.
[15] Hong H Q, Liao H Y, Chen S J, Zhang H Y. Mater Lett, 2014, 122(5):227~229.
[16] Seidi F, Jin Y C, Han J Q, Saeb M R, Akbari A, Hosseini, S H, Shabanian M, Xiao H N. Chem Rec, 2020, 20(10):1~22.
[17] 杨瑞雨. 基于氢键的自修复聚合物材料制备及特性研究. 成都:电子科技大学, 2020.
[18] Kostina N Y, Sharifi S, Pereira A D L S, Michálek J, Grijpma D W, Rodriguez-Emmenegger C R. J Mater Chem, 2013, 1(41):5644~5650.
[19] Kostina N Y, Rodriguez-Emmenegger C, Houska M, Brynda E, Michálek J. Biomacromolecules, 2012, 13(12):4164~4170.
[20] Ning J, Kubota K, Li G, Haraguchi K. React Funct Polym, 2013, 73(7):969~978.
[21] Bai T, Liu S, Sun F, Sinclair A, Zhang L, Shao Q, Jiang S Y. Biomaterials, 2014, 35(13):3926~3933.
[22] Liu H, Xiong C M, Tao Z, Fan Y J, Tang X F, Yang H Y. RSC Adv, 2015, 5(42):33083~3308.
[23] Ihsan A B, Sun T L, Kurokawa T, Karobi S N, Gong J P. Macromolecules, 2016, 49(11):4245~4252.
[24] Li X, Cui K, Sun T L, Gong J P. Proc Nati Acad Sci USA, 2020, 117(14):7606~7612.
[25] Li C H, Zuo J L. Adv Mater, 2020, 32(27):1903762.
[26] Shi L Y, Ding P H, Wang Y Z, Zhang Y, Ossipov D, Hilborn J. Macromol Rapid Commun, 2019, 40(7):1800837.
[27] 付维贵, 毛云云, 薛莹莹, 杨雪松, 梅淑贞, 孙宝山. 天津工业大学学报, 2019, 38(3):28~34.
[28] Burnworth M, Tang L, Kumpfer J R, Duncan A J, Beyer F, Fiore G, Rowan S J, Weder C. Nature, 2011, 472:334~337.
[29] Rossow T, Habicht A, Seiffert S. Macromolecules, 2014, 47(18):6473~6482.
[30] 李鹏. 基于金属离子配位的壳聚糖水凝胶的制备及性能研究. 北京:北京理工大学, 2016.
[31] Zeng L, Song M M, Gu J, Xu Z Y, Xue B, Li Y, Cao Y. Biomimetics, 2019, 4(2):36~45.
[32] Das S, Martin P, Vasilyev G, Nandi R, Amdursky N, Zussman E. Macromolecules, 2020, 53:11130~11141.
[33] Yu H C, Zheng S Y, Fang L T, Wu Z L, Zheng Q. Adv Mater, 2020, 32:2005171.
[34] Burattini S, Colquhoun H M, Greenland B W, Hayes W. Faraday Discuss, 2009, 143(3):251~264.
[35] Burattini S, Colquhoun H M, Fox J D, Hayes W, Mackayc M E, Rowan S J. Chem Commun, 2009, 44(44):6717~6719.
[36] Dong R N, Xin Z, Guo B L, Ma P X. ACS Appl Mater Interfaces, 2016, 8(27):17138~17150.
[37] Zhang Q, Liu L B, Pan C G, Li D. J Mater Sci, 2018, 53(1):27~46.
[38] Cong H P, Wang P, Yu S H. Chem Mater, 2013, 25(16):3357~3362.
[39] Liu J Q, Song G S, He C C, Wang H L. Macromol Rapid Commun, 2013, 34(12):1002~1007.
[40] Liang Y P, Zhao X, Hu T L. Small, 2019, 15(12):1900046.
[41] Xu J J, Wang G Y, Wu Y F, Ren X Y, Gao G H. ACS Appl Mater Interfaces, 2019, 11(28):25613~25623.
[42] Li X, Deng Y, Lai J L, Zhao G, Dong S Y. J Am Chem Soc, 2020, 142(11):5371~5379.
[43] Krogsgaard M, Nue V, Birkedal H. Chem-Eur J, 2016, 22(3):844~857.
[44] Sedo J, Saiz-Poseu J, Busque F. Adv Mater, 2013, 25(5):653~701.
[45] Wilker J J. Nat Mater, 2014, 13(9), 849~850.
[46] Shao H, Stewart R J. Adv Mater, 2010, 22(6):729~733.
[47] Narkar A R, Barker B, Clisch M, Jiang J F, Lee B P. Chem Mater, 2016, 28(15):5432~5439.
[48] Hofman A H, Van-Hees I A, Yang J, Kamperman M. Adv Mater, 2018, 30(19):1704640.
[49] Holten-Andersen N, Harrington M J, Birkedal H, Waite J H. Proc Nati Acad Sci USA, 2011, 108 (7):2651~2655.
[50] Yavvari P S, Srivastava A. J Mater Chem B, 2015, 3(5):899~910.
[51] Zeng H B, Hwang D S, Israelachvili J N, Waite L H. Proc Nati Acad Sci USA, 2010, 107(29):12850~12853.
[52] Li L, Yan B, Yang J, Chen L Y, Zeng H B. Adv Mater, 2015, 27 (7):1294~1299.
[53] Li L, Yan B, Yang J, Huang W J, Chen L Y. Zeng H B. ACS Appl Mater Interfaces, 2017, 9(11):9221~9225.
[54] Gao Z J, Duan L J, Yang Y Q, Hu W, Gao G H. Appl Surf Sci, 2018, 427(1):74~82.
[55] Nam H G, Nam M G, Yoo P J, Kim J H. Soft Matter, 2019, 15(4):785~791.
[56] Maier G P, Rapp M V, Waite J H, Israelachvili J N, Butler A. Science, 2015, 349(6248):628~632.
[57] Gebbie M A, Wei W, Schrader A M, Cristiani T S, Dobbs H A, Israelachvili J N. Nat Chem, 2017, 9(7):473~479.
[58] Fan H L, Wang J H, Tao Z, Huang J C, Rao P, Kurokawa T, Gong J P. Nat Commun, 2019, 10(1):1~8.
[59] Mazzotta M G, Putnam A A, North M A, Wilker J J. J Am Chem Soc, 2020, 142(10):4762~4768.
[60] 宣扬, 蒋官澄, 李颖颖, 耿浩男, 王金树. 石油勘探与开发, 2013, 40(4):497~501.
[61] 汤志川, 邱正松, 钟汉毅, 郭保雨, 王旭东, 郑杨. 钻井液与完井液, 2019, 36(5):534~541.
[62] 蒋官澄, 贺垠博, 崔物格, 杨丽丽,叶晨曦. 石油勘探与开发, 2019, 46(2):385~390.
[63] 孙金声, 赵震, 白英睿, 吕开河, 王金堂, 王韧, 王晨烨, 戴立瑶.石油学报, 2020, 41(12):1706~1718.
[64] 刘宽, 罗平亚, 丁小惠, 郭拥军, 王翔, 林代洪. 油田化学, 2017, 34(3):433~437.
[65] 赵庆美, 赵林, 汤琪, 马超. 油田化学, 2016, 33(4):596~600.

相似文献/References:

[1]雒春辉,王美怡,杨晋,等.聚丙烯酰胺结构与水溶液粘度保持率[J].高分子通报,2016,(04):95.[doi:10.14028/j.cnki.1003-3726.2016.04.010]
 LUO Chun-hui,WANG Mei-yi,YANG Jin,et al.Polyacrylamide Structure and Viscosity Retention Rate of Aqueous Solution[J].POLYMER BULLETIN,2016,(10):95.[doi:10.14028/j.cnki.1003-3726.2016.04.010]

备注/Memo

备注/Memo:
收稿日期:2021-5-15;改回日期:2022-1-28。
基金项目:国家重点研发计划项目“油/水/固界面浸润调控智能流体提高采收率关键材料与机理研究”(项目编号2019YFA0708700)
作者简介:刘佳伟(1992-),男,博士,研究方向为提高采收率与采油化学。E-mail:jiaweiliuupc@163.com
通讯作者:戴彩丽,E-mail:daicl@upc.edu.cn.
更新日期/Last Update: 2022-09-20