[1]冯园,王宏球,于俊荣.超高分子量聚乙烯的磨损机理及耐磨改性研究进展[J].高分子通报,2022,(10):54-62.[doi:10.14028/j.cnki.1003-3726.2022.10.007]
 FENG Yuan,WANG Hong-qiu,YU Jun-rong.Research Progress on the Abrasion Mechanism and Wear-resistance Modification of Ultra High Molecular Weight Polyethylene[J].POLYMER BULLETIN,2022,(10):54-62.[doi:10.14028/j.cnki.1003-3726.2022.10.007]
点击复制

超高分子量聚乙烯的磨损机理及耐磨改性研究进展()
分享到:

《高分子通报》[ISSN:1003-3726/CN:11-2051/O6]

卷:
期数:
2022年10期
页码:
54-62
栏目:
出版日期:
2022-10-20

文章信息/Info

Title:
Research Progress on the Abrasion Mechanism and Wear-resistance Modification of Ultra High Molecular Weight Polyethylene
作者:
冯园1 王宏球2 于俊荣2
1. 上海理工大学体育部, 上海 200093;
2. 东华大学材料学院, 上海 201620
Author(s):
FENG Yuan1 WANG Hong-qiu2 YU Jun-rong2
1. Sports Department, University of Shanghai for Science and Technology, Shanghai 200093, China;
2. College of Material Science and Engineering, Donghua University, Shanghai 201620, China
关键词:
超高分子量聚乙烯磨损机理耐磨改性
Keywords:
Ultra high molecular weight polyethyleneAbrasion mechanismWear-resistance modification
DOI:
10.14028/j.cnki.1003-3726.2022.10.007
文献标志码:
A
摘要:
超高分子量聚乙烯(UHMWPE)因具有优异的力学性能和较低的摩擦系数而被广泛用于减摩耐磨材料,然而UHMWPE表面硬度低、耐磨粒磨损性能差又易造成摩擦失效,影响了其在高耐磨领域的应用。本论文阐述了影响 UHMWPE 磨损性质的外在及内在因素,综述了UHMWPE的摩擦磨损机理及其研究进展,从使用润滑剂、共混改性、交联改性和在制品表面构筑耐磨涂层四个方面总结了改善UHMWPE耐磨性的方法,并详细阐述了UHMWPE的耐磨改性研究进展,为高耐磨UHMWPE材料的制备提供了一定的实验借鉴以及理论依据。
Abstract:
Ultra high molecular weight polyethylene (UHMWPE) has been widely used as a kind of antifriction and wear-resistant materials because of its excellent mechanical properties and low friction coefficient. However, the low surface hardness and poor abrasive resistance of UHMWPE make it easy to be friction failured, which greatly affects its application in high wear-resistant fields. In this paper, the external and internal factors affecting the abrasion properties of UHMWPE are summarized, the friction and abrasion mechanisms and their research progress are overviewed. The wear-resistant modification methods of UHMWPE and their research progress are expounded in details from four aspects of using lubricant, blending modification, cross-linking modification and constructing wear-resistant coating on the surface of UHMWPE products, which provides the experimental and theoretical basis for the preparation of high wear-resistant UHMWPE materials.

参考文献/References:

[1] 向东. 化工科技市场, 2006, 29(5):41~45, 50.
[2] 段海涛, 吴伊敏, 王学美, 王鼎, 凃杰松, 李健. 武汉理工大学学报, 2012, 34(6):17~21.
[3] 艾承冲, 蒋佳, 陈世益. 复旦学报, 2016, 43(6):717~723.
[4] Patten E W, van Citters D, Ries M D, Pruitt L A. Wear, 2014, 313:125~134.
[5] 宫德利, 薛群基. 润滑与密封, 1989, 14(2):55~61.
[6] 雷毅, 郭建良. 高分子材料科学与工程, 2008, 24(12):110~113.
[7] Song J, Xiang D, Wang S, Liao Z, Lu J, Liu Y, Liu W, Peng Z. Tribol Int, 2018, 122:218~227.
[8] Menezes P L, Kailas S V. Biosurf Biotribol, 2016, 2(1):1~10.
[9] Shalwan A, Yousif B F. Mater Design, 2013, 48:14~24.
[10] Saad N, Najim M. Test Eng Management, 2020, 83:22000~22012.
[11] Yousif B F, Alsofyani I M, Yusaf T F. Tribol-Mater Surf In, 2010, 4(2):78~85.
[12] Sonjaitham N, Puangmalee N. Key Eng Mater, 2017, 743:63~67.
[13] Wang A, Essner A, Polineni V K, Stark C, Dumbleton J H. Tribol Int, 1998, 31(1):17~33.
[14] Ribeiro R, Goncalves A C, de Albuquerque M D F. Int J Adv Manuf Tech, 2020, 106(9):4193~4202.
[15] Chen K, Zhang D K, Yang X H, Zhang X, Wang Q L, Qi J W. J Mater Eng Perform, 2016, 25(12):5400~5410.
[16] Zhu C, Jacobs O, Jaskulka R, Koller W, Wu W. Polym Test, 2004, 23(6):665~673.
[17] Song J, Liu P, Cremens M, Bonutti P. Wear, 1999, 225~229:716~723.
[18] Panin S V, Kornienko L A, Alexenko V O, Buslovich D G, Bochkareva S A, Lyukshin B A. Materials, 2020, 13(2):338.
[19] Gurgen S, Sert A, Kushan M C. J Appl Polym Sci, 2021, 138(16):50245.
[20] 秦襄培, 李健, Meng H, 刘洪涛. 摩擦学学报, 2005, 25(6):550~554.
[21] Zicans J, Maksimov R D, Plume E, Meri R M, Jansons J. Compos Struct, 2018, 183:483~488.
[22] Meng Z J, Wang Y X, Xin X C, Liu H, Yan F Y. Ind Lubr Tribol, 2020, 72(7):821~827.
[23] An M F, Lv Y, Xu H J, Wang B J, Wang Y X. Ind Eng Chem Res, 2016, 55(30):8357~8363.
[24] 刘文勇, 刘圣恭, 刘瑞刚. 包装学报, 2019, 11(2):1~7.
[25] Huang J, Qu S X, Wang J, Yang D, Duan K, Weng J. Mater Sci Eng C-Mater, 2013, 33(5):3001~3009.
[26] Galetz M C, Glatzel U. Tribol Lett, 2010, 38(1):1~13.
[27] Ansari F, Ries M D, Pruitt L. J Mech Behav Biomed, 2016, 53:329~340.
[28] Medel F J, Martinez-Morlanes M J, Alonso P J, Rubin J, Pascual F J, Puertolas J A. Mater Sci Eng C-Mater, 2013, 33(1):182~188.
[29] Buford A, Goswami T. Mater Design, 2004, 25(5):385~393.
[30] Zhang H, Zhao S C, Xin Z, Ye C L, Li Z, Xia J C. Ind Eng Chem Res, 2019, 58(42):19519~19530.
[31] Flory P J, Yoon D Y, Dill K A. Macromolecules, 1984, 17(4):862~868.
[32] Kitamaru R, Horii F, Murayama K. Macromolecules, 1986, 19(3):636~643.
[33] 张欢. 超高分子量聚乙烯及其复合物耐磨机理研究. 上海:华东理工大学, 2020.
[34] Zhang H, Zhao S C, Xin Z, Ye C L, Li Z, Xia J C, Li J R. Chinese J Chem Eng, 2020, 28(7):1950~1963.
[35] Shi W, Dong H, Bell T. Mater Sci Eng A-Struct, 2000, 291(1):27~36.
[36] Wang J Z, Yan F Y, Xue Q J. Tribol Lett, 2009, 35(2):85~95.
[37] Liu N, Wang J Z, Chen B B, Han G F, Yan F Y. Tribol Lett, 2014, 55(2):253~260.
[38] 吴刚, 王成焘, 张文光. 摩擦学学报, 2009, 29(2):157~162.
[39] Wu G, Zhao C H, Qin H L, Zhao X Z. Adv Mater Res, 2011, 199~200:651~654.
[40] Kobayashi M, Koide T, Hyon S H. J Mech Behav Biomed, 2014, 38:33~38.
[41] 周潇然, 周新聪, 程俊锋, 黄健. 润滑与密封, 2016, 41(12):80~85.
[42] 马习贺, 王振华, 何强, 李文昊, 张勇. 排灌机械工程学报, 2019, 37(10):875~881.
[43] Plumlee K, Schwartz C J. Wear, 2009, 267(5):710~717.
[44] 曹凤香, 王亚楠, 吴坤尧. 润滑与密封, 2021, 46(4):94~99.
[45] 董淑强, 刘春林, 刘杰, 钱天语, 周开源. 高分子材料科学与工程, 2015, 31(7):69~74.
[46] 张间芳, 王新威, 孙勇飞, 刘水尧, 龚文澜, 闻文军. 中国, 201710466779.X, 2017.06.20.
[47] Panin S V, Kornienko L A, Suan T A, Ivanova L R, Poltaranin M A, Shilko S V. J Frict Wear, 2014, 35(4):290~296.
[48] Liu T, Eyler A, Zhong W H. Mater Lett, 2016, 177:17~20.
[49] Yang Z X, Guo Z W, Yang Z R, Wang C B, Yuan C Q. Tribol Int, 2021, 153:106629.
[50] Wang Y Z, Yin Z W. Ind Lubr Tribol, 2019, 71(1):22~30.
[51] Panin S V, Kornienko L A, Hiep L T M, Aleksenko V O, Buslovich D G. Russ Phys J, 2020, 63(4):554~562.
[52] 牛永平, 甘立慧, 杜三明, 张军凯, 张永振. 润滑与密封, 2010, 35(2):11~14.
[53] Wei Z, Zhao Y P, Ruan S L, Gao P, Yu T X. Surf Interface Anal, 2006, 38(4):883~886.
[54] Kumar A, Bijwe J, Sharma S. Wear, 2017, 378~379:35~42.
[55] Sharma S, Bijwe J, Panier S. Compos Part B-Eng, 2016, 99:312~320.
[56] Sharma S, Bijwe J, Panier S, Sharma M. Wear, 2015, 332~333:863~871.
[57] Padhan M, Paul G, Bijwe J. Front Mater, 2020, 7(205):1~15.
[58] Zabolotnov A S, Brevnov P N, Akul’ Shin V V, Novokshonova L A, Doronin F A, Evdokimov A G, Nazarov V G. Polym Sci, 2018, 11(3):297~302.
[59] Xie X L, Tang C Y, Chan K Y Y, Wu X C, Tsui C P, Cheung C Y. Biomaterials, 2003, 24(11):1889~1896.
[60] 罗玉梅, 周勇, 梁兵. 工程塑料应用, 2010, 38(8):60~63.
[61] Vidya V, Anoop C A, Jinan S, Anwar R, Saravanan M S S. Mater Today Proceedings, 2020, 27:2748~2751.
[62] 李飞, 郭奕友, 成惠斌, 曹长林, 钱庆荣, 肖荔人, 陈庆华. 高分子材料科学与工程, 2020, 36(2):82~89.
[63] Wang H L, Xu L, Zhang M X, Li R, Xing Z, Hu J T, Wang M H, Wu G Z. J Appl Polym Sci, 2016, 134(13):44643.
[64] 段为朋, 冒浴沂, 庞文超. 塑料工业, 2018, 46(12):114~118.
[65] 邓亚玲. UHMWPE表面仿生关节软骨构建及性能研究. 南京:南京理工大学, 2016.
[66] 施雯, 曾招钦, 陈智勇, 徐润翔. 核技术, 2008, 31(11):820~823.
[67] Doshi B N, Fu J, Oral E, Muratoglu O K. J Appl Polym Sci, 2015, 132(44):42735.
[68] Xu J Z, Muratoglu O K, Oral E. J Biomed Mater Res B, 2019, 107(3):716~723.
[69] Aliyu I K, Samad M A, Ai-Qutub A. Surf Eng, 2021, 37(1):60~69.
[70] Martinez-Nogues V, Medel F J, Mariscal M D, Endrino J L, Krzanowski J, Yubero F, Puertolas J A. J Phys Conf Ser, 2010, 252:12006.
[71] Takeichi Y, Higashiyama T, Nakahigashi T, Tanaka Y, Tsujioka M, Uemura M. Tribol Online, 2008, 3(2):94~99.
[72] Chih A, Anson-Casaos A, Puertolas J A. Tribol Int, 2017, 116:295~302.
[73] Li D K, Guo Z G. RSC Adv, 2017, 7(15):9169~9175.
[74] Deng Y L, Xiong D S. J Polym Res, 2015, 22(10):195.
[75] Deng Y L, Xiong D S, Wang K. J Mater Sci-Mater M, 2013, 24(9):2085~2091.
[76] Kane S R, Ashby P D, Pruitt L A. J Biomed Mater Res A, 2010, 92A(4):1500~1509.

相似文献/References:

[1]黄安平,朱博超,贾军纪,等.超高分子量聚乙烯的研发及应用[J].高分子通报,2012,(04):127.
 HUANG An-ping,ZHU Bo-chao,JIA Jun-ji,et al.Research Progress and Application of Ultra High Molecular Weight Polyethylene[J].POLYMER BULLETIN,2012,(10):127.
[2]宾月珍,陈茹,张荣,等.超高分子量聚乙烯基导电复合材料的电性能和自发热性能的研究[J].高分子通报,2012,(01):76.
 BIN Yuezhen,CHEN Ru,ZHANG Rong,et al.Study on Electrical and Self-heating Properties of Ultra-high Molecular Weight Polyethylene-based Conductive Composites[J].POLYMER BULLETIN,2012,(10):76.
[3]邹华维,陈洋,梁梅.聚乙烯/超高分子量聚乙烯共混体系相行为的动态流变学研究[J].高分子通报,2014,(02):130.
 ZOU Hua-wei,CHEN Yang,LIANG Mei.Dynamic Rheological Behavior of Polyethylene/Ultra-high-molecular-weight Polyethylene Blends[J].POLYMER BULLETIN,2014,(10):130.
[4]徐杰,历伟,赵传壮,等."半稀溶液"中超高分子量聚乙烯链缠绕结构的演变行为[J].高分子通报,2015,(07):43.[doi:10.14028/j.cnki.1003-3726.2015.07.006]
 XU Jie,LI Wei,ZHAO Chuan-zhuang,et al.Emergence of Chain Entanglement of UHMWPE in "Semi-Dilute Solution"[J].POLYMER BULLETIN,2015,(10):43.[doi:10.14028/j.cnki.1003-3726.2015.07.006]
[5]柏栋予,白红伟,傅强.高分子材料烧结成型研究进展[J].高分子通报,2017,(10):13.[doi:10.14028/j.cnki.1003-3726.2017.10.002]
 BAI Dong-yu,BAI Hong-wei,FU Qiang.Recent Progress on Sintering Molding of Polymers[J].POLYMER BULLETIN,2017,(10):13.[doi:10.14028/j.cnki.1003-3726.2017.10.002]
[6]尚晴,赵晗,赵宁,等.超高分子量聚乙烯纤维表面改性的研究进展[J].高分子通报,2020,(04):22.[doi:10.14028/j.cnki.1003-3726.2020.04.003]
 SHANG Qing,ZHAO Han,ZHAO Ning,et al.Research Progress on Surface Modification of Ultra-high Molecular Weight Polyethylene Fiber[J].POLYMER BULLETIN,2020,(10):22.[doi:10.14028/j.cnki.1003-3726.2020.04.003]
[7]冯彦洪,江翎雯,张桂珍.超高分子量聚乙烯分子链缠结调控技术研究进展[J].高分子通报,2022,(06):13.[doi:10.14028/j.cnki.1003-3726.2022.06.002]
 FENG Yan-hong,JIANG Ling-wen,ZHANG Gui-zhen.Research Progress in Chain Entanglement Regulation of Ultrahigh Molecular Weight Polyethylene[J].POLYMER BULLETIN,2022,(10):13.[doi:10.14028/j.cnki.1003-3726.2022.06.002]

备注/Memo

备注/Memo:
收稿日期:2021-8-19;改回日期:2021-10-26。
作者简介:冯园(1972-),女,上海人,讲师,主要从事体育用品研究
通讯作者:于俊荣,博士生导师。E-mail:yjr@dhu.edu.cn.
更新日期/Last Update: 2022-09-20