[1]曹乐乐,宋俊,邵程浩.基于多巴胺-铜的抗污染纤维素织物的制备及其性能研究[J].高分子通报,2022,(10):120-130.[doi:10.14028/j.cnki.1003-3726.2022.10.013]
 CAO Le-le,SONG Jun,SHAO Cheng-hao.Preparation and Properties of Anti-pollution Cellulose Fabric Based on Dopamine-copper[J].POLYMER BULLETIN,2022,(10):120-130.[doi:10.14028/j.cnki.1003-3726.2022.10.013]
点击复制

基于多巴胺-铜的抗污染纤维素织物的制备及其性能研究()
分享到:

《高分子通报》[ISSN:1003-3726/CN:11-2051/O6]

卷:
期数:
2022年10期
页码:
120-130
栏目:
出版日期:
2022-10-20

文章信息/Info

Title:
Preparation and Properties of Anti-pollution Cellulose Fabric Based on Dopamine-copper
作者:
曹乐乐 宋俊 邵程浩
天津工业大学 材料科学与工程学院, 天津 300387
Author(s):
CAO Le-le SONG Jun SHAO Cheng-hao
School of Material Science and Engineering, TianGong University, Tianjin 300387, China
关键词:
纤维素织物多巴胺抗污染性超疏水性
Keywords:
Cellulose fabricDopamineAnti-pollution performanceSuperhydrophobicity
DOI:
10.14028/j.cnki.1003-3726.2022.10.013
文献标志码:
A
摘要:
纤维素织物在使用过程中易受到水渍的污染,甚至还会滋生细菌。为了降低污染物对织物使用性能的影响,需要对其进行抗污染改性。本文将纤维素织物依次在多巴胺、硫酸铜溶液中进行处理,通过硼氢化钠将铜离子还原成铜单质,再将处理后的织物浸渍于十六烷基三甲氧基硅烷(Hexadecyltrimethoxysilane,HDTMS)溶液中,制备具有抗污染性能的织物。结果表明,制备的抗污染织物的接触角为155°,满足超疏水表面的要求,且对大肠杆菌(Escherichia coli,E. coli)和金黄色葡萄球菌(Staphylococcus aureus,S. aureus)的抑菌率均达到了99.9%。织物经过24 h的超声处理后,仍保持稳定的抗污染性能。本文所制备的抗污染织物兼具抗水性污染和可生物降解的特点,有望拓展其在医疗卫生等领域的应用。
Abstract:
Cellulose fabric is susceptible to water contamination and can even breed bacteria in the process of using. In order to reduce the influence of pollutants on the performance of the fabric, it is necessary to modify it for anti-pollution. In this study, the cellulose fabric is treated sequentially in dopamine and copper sulfate solution, copper ions are reduced to copper element by sodium borohydride, and the treated fabric is immersed in the hexadecyltrimethoxysilane(HDTMS) solution to prepare the fabric with anti-pollution properties. The results show that the contact angle of the resultant anti-pollution fabric is 155°, which meets the requirements of a superhydrophobic surface, and the antibacterial rates against both E.coli and S.aureus have reached 99.9%. After 24 h of ultrasonic treatment, the fabric still maintains stable anti-pollution performance. The anti-pollution fabric prepared in this article has both water-resistant pollution and biodegradable characteristics, and it is expected to expand its application in the medical and health field.

参考文献/References:

[1] Khalil-Abad M S, Yazdanshenas M E. J Colloid Interf Sci, 2010, 351(1):293~298.
[2] Wu M C, Ma B H, Pan T Z, Chen S S, Song J Q. Adv Funct Mater, 2016, 26(4):569~576.
[3] Rous M A, Ingolic E, Schuster K C. Cellulose, 2006, 13(4):411~419.
[4] Yaghoubidous F, Salimi E. Fiber Polym, 2019, 20(7):1375~1379.
[5] Irfan M, Polonskyi O, Hinz A, Mollea C, Bosco F, Strunskus T, Balagna C, Perero S, Faupel F, Ferraris M. Cellulose, 2019, 26(16):8877~8894.
[6] Fei Z L, Liu B J, Zhu M F, Wang W, Yu D. Cellulose, 2018, 25(5):3179~3188.
[7] Berendjchi A, Khajavi R, Yazdanshenas M E. Nanoscale Res Lett, 2011, 6:594~602.
[8] Yan B B, Zhou Q Q, Zhu X W, Guo J F, Mia S P, Yan X J, Chen G Q, Xing T L. Appl Surf Sci, 2019, 483:929~939.
[9] Zhao J Y, Wu G S, Wang P, Wang T, Li Z, Chen L. Cellulose, 2019, 26(11):6979~6993.
[10] Li Y Z, Wang B J, Sui X F, Xie R Y, Xu H, Zhang L P, Zhong Y, Mao Z P. Appl Surf Sci, 2018,435:1337~1343.
[11] Yan X J, Zhu X W, Ruan Y T, Xing T L, Chen G Q, Zhu C X. Cellulose, 2020, 27(13):7873~7885.
[12] Wu T Y, Lu F, Wen Q H, Yu k, Lu B T, Rong B, Dai F Y, Lan G Q. Cellulose, 2015, 25(25):5361~5376.
[13] Lin J, Chen X Y, Chen C Y, Hu J T, Zhou C L, Cai X F, Wang W, Zheng C, Zhang P P, Cheng J. ACS Appl Mater Interfaces, 2018, 10(7):6124~6136.
[14] Taner M, Sayar N, Yulug I G, Suzer S. J Mater Chem, 2011, 21(35):13150~13154.
[15] Yang J Y, Xu H, Zhang L P, Zhong Y, Sui X F, Mao Z P, Surf Coat Technol, 2017, 309:149~154.
[16] Shateri-Khalilabad M, Yazdanshenas M E, Etemadifar A. Arab J Chem, 2017, 10:S2355~S2362.
[17] Suryaprabha T, Sethuraman M. Cellulose, 2017, 24(1):395~407.
[18] Huang L C, Zhao S, Wang Z, Wu J H, Wang J X, Wang S C. J Membr Sci, 2016, 499:269~281.
[19] 严梦华, 欧军乐. 江西化工, 2018, 3:103~107.
[20] Rong L D, Liu H C, Wang B J, Mao Z P, Xu H, Zhang L P, Zhong Y, Feng X L, Sui X F. Carbohydr Polym, 2019, 211:173~180.
[21] Mao Y, Wang W, Yu D. J Appl Polym Sci, 2018, 135(42):1390~1340.
[22] Wang K, Ma Q, Zhang Y M, Wang S D, Han G T. Polymers, 2020, 12(4):721~723.
[23] Zhang D, Zheng G L, Zheng C, Wu Y H, Long Z. Prog Org Coat, 2019, 134:226~233.

相似文献/References:

[1]赵晨旭,谢银红,廖芝建,等.聚多巴胺对材料表面功能化的研究及应用进展[J].高分子通报,2015,(12):28.[doi:10.14028/j.cnki.1003-3726.2015.12.004]
 ZHAO Chen-xu,XIE Yin-hong,LIAO Zhi-jian,et al.The Research and Application Progress of Polydopamine on the Material Surface Functionalization[J].POLYMER BULLETIN,2015,(10):28.[doi:10.14028/j.cnki.1003-3726.2015.12.004]
[2]余露佳,轩钦,赵宁,等.仿贻贝粘性高分子的应用进展[J].高分子通报,2017,(08):8.[doi:10.14028/j.cnki.1003-3726.2017.08.002]
 YU Lu-jia,XUAN Qin,ZHAO Ning,et al.Progress in Application of Mussel-inspired Bio-mimic Polymers[J].POLYMER BULLETIN,2017,(10):8.[doi:10.14028/j.cnki.1003-3726.2017.08.002]
[3]刘德,刘雨晗,张妍,等.基于多巴胺表面改性技术研究现状[J].高分子通报,2022,(04):30.[doi:10.14028/j.cnki.1003-3726.2022.04.003]
 LIU De,LIU Yu-han,ZHANG Yan,et al.Research Status of the Surface Modification Method Based on Dopamine[J].POLYMER BULLETIN,2022,(10):30.[doi:10.14028/j.cnki.1003-3726.2022.04.003]

备注/Memo

备注/Memo:
收稿日期:2021-8-9;改回日期:2021-10-29。
作者简介:曹乐乐(1996-),女,硕士研究生,研究方向为生态环境纤维材料和功能纤维材料
通讯作者:宋俊,E-mail:sjhb2000@163.com.
更新日期/Last Update: 2022-09-20